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Abstract
It is expected that the implementation of minimal length in quantum models
leads to a consequent lowering of Planck’s scale. In this paper, using the
quantum model with minimal length of Kempf et al (1994 J. Math. Phys. 35
4483; 1995 Phys. Rev. D 52 1108; 1997 J. Phys. A 30 2093; 1996 J. Math.
Phys. 37 2121), we examine the effect of the minimal length on the Casimir
force between parallel plates.

PACS numbers: 02.40.Gh, 03.65.Ge

1. Introduction

The construction of a quantized theory which incorporates gravity remains one of the priorities
of theoretical physicists. Unfortunately, all the attempts towards this goal fail. The reason
is that the Planck scale lp = 1.616 05 × 10−35 m, at which the effects of quantum gravity
reveal themselves, is so small that these effects are neglected in experimentally accessible
energies. Recently, to solve this problem, different scenarios have been proposed, all leading
to a significant lowering of Planck’s scale. Among them are the models with large extra
dimensions (LXD) [1], non-commutative field theory models [2] and models with nonzero
minimal lengths [3]. In this paper, we are interested in the later models based on generalized
commutation relations [x̂i , p̂j ] = ih̄[(1 + βp̂2)δij + β ′p̂i p̂j ]. These commutation relations
lead to a generalized uncertainty principle (GUP) which defines nonzero minimal lengths in
position and/or momentum. A nonzero minimal length in position has first appeared in the
context of perturbative string theory [4]. One major feature of this finding is that the physics
below such a scale becomes inaccessible and then defines a natural cut-off which prevents
the usual UV divergencies. The other consequence of such a GUP is the appearance of an
intriguing UV/IR mixing, first noticed in the ADS/CFT correspondence [5]. Physically, the
UV/IR mixing means that we can probe short distances physics by long distances physics. We
point out that the UV/IR mixing is also a feature of non-commutative quantum field theory
[2, 6]. On the other hand, some scenarios have been proposed where nonzero minimal length
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is related to large extra dimensions [7], to the running coupling constant [8] and to the physics
of black holes production [9].

Recently the cosmological constant problem and the classical limit of the physics with
minimal length have been investigated by the group Virginia Tech [10, 11]. In [11] the value
of the minimal length is so small that it seems meaningful. The size of the minimal length has
also been extracted from the energy spectrum of the Coulomb potential [12, 13] and from the
energy spectrum of electrons in a trap [14].

On the other hand, the Casimir force has been calculated in a model incorporating one
large extra dimension [15]. A comparison with available experimental data gives R � 10 nm
where R is the size of the compactified extra dimension. Motivated by the fact that large extra
dimensions and minimal lengths models aim to lower Planck’s scale and can be related to each
other, we calculate, in this paper, the effect of the presence of a minimal length on the Casimir
force between parallel plates.

The rest of the paper is organized as follows. In section 2, implementing the minimal
length using standard methods of quantum mechanics we obtain the generalized uncertainty
principle (GUP), generalized plane waves and modified closure relations. In section 3, we
quantify the electromagnetic field and then following the standard recipe we calculate the
Casimir force between two parallel plates. Section 4 is left for concluding remarks.

2. Quantum mechanics with generalized Heisenberg relation

Following [3], we consider the following realization of the position and momentum operators

Xi = ih̄

[
(1 + βp2)

∂

∂pi

]
, Pi = pi, (1)

where β is a small positive parameter. This representation leads to the following generalized
commutators

[Xi, Pj ] = ih̄δij (1 + βp2), (2)

[Xi,Xj ] = 2ih̄β(xipj − pixj ), (3)

[Pi, Pj ] = 0 (4)

and the generalized uncertainty principle (GUP)

(�Xi)(�Pi) � h̄

2
[1 + β(�p)2]. (5)

The peculiarity of relation (5) is that it exhibits the UV/IR mixing phenomenon which allows
us to probe short distance physics (UV) from long distance one (IR). A minimization of (5)
with respect to (�Pi) gives the following nonzero minimal length

(�Xi)min = h̄
√

β. (6)

Equation (6), like the UV/IR mixing, reveals the non-local character of models based on
equations (1)–(3). Then we have not localized eigenfunctions in the r-space. So, any
eigenvalue problem can be solved by going to the momentum space.

In the following, we derive necessary relations for our calculation taking in mind that
we must recover the usual quantum mechanics in the limit β → 0. First, we assume that
R|r〉 = r|r〉 where the vectors |r〉 represent maximally localized states. They are normalized
states unlike the ones of ordinary quantum mechanics.
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Using these maximally localized states we derive the following quasi-position
eigenvectors

fp(r) = 1
3
√

2πh̄
exp

(
− ir

h̄
√

β
arctan p

√
β

)
(7)

with the following generalized dispersion relation

λ(|p|) = 2πh̄
√

β

arctan(|p|√β)
. (8)

The states given by (7) are far from being the well-known plane waves. However, in the limit
β → 0 we recover the usual plane waves of ordinary quantum mechanics.

Now assuming the usual closure relation for the maximally localized eigenstates
1 = ∫ +∞

−∞ dr′|r〉〈r|, we obtain

〈p′ | p〉 =
√

βδ(arctan
√

βp − arctan
√

βp′). (9)

Using the relation δf (x) = �i
δ(x−xi )

f ′(xi )
, where xi are the roots of f (x), we finally get

〈p′ | p〉 = (1 + βp2)
1
2 (1 + βp′2)

1
2 δ(p − p′). (10)

From this equation we derive the modified completeness relation for the momentum
eigenstates |p〉 ∫

dp
(1 + βp2)

|p〉〈p| = 1. (11)

Here we observe a squeezing of the momentum space at high momentum. Let us end our
calculations by showing that the states |r〉, like the coherent states, do not form an orthogonal
set. Indeed, we have

〈r | r′〉 =
∫

dp
(1 + βp2)

fp(r)f ∗
p (r′)

=
∫

dp
(1 + βp2)

exp

{
− i(r − r′)

h̄
√

β
arctan

√
βp

}

= 1

π(r − r′)
sin

(
π(r − r′)

2h̄
√

β

)
. (12)

The right-hand side is a well-behaved function unlike the Dirac distribution of ordinary
quantum mechanics. It is clear that the limit β −→ 0 restores the usual normalization
〈r | r′〉 = δ(r − r′). In conclusion, we have chosen to work with the normalization constant
1/

3
√

2πh̄, while this choice renders the states given by equation (7) unphysical, to reproduce
in the limit β → 0 the usual results of quantum mechanics.

3. Casimir effect

The most general solution of the Maxwell equations in the presence of a minimal length in the
Coulomb gauge for slowly moving particles is given by

Â(r, t) =
√

2πh̄3c
√

β

∫
dp

(1 + βp2)
√

arctan
√

β|p|
∑

γ=±1

[
fγ (p, ω)âγ (p) + f ∗(p, ω)â†

γ (p)
]

(13)
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where fγ (p, ω) are generalized plane waves which can be obtained from equation (7),

fγ (p, ω) = εγ (p)
3
√

2πh̄
exp

(
i

h̄
√

β
[r arctan(p

√
β) − h̄ω(|p|)t]

)
, (14)

with ω(|p|) defined by the generalized dispersion relation (8) and εγ (k) are the polarization
vectors verifying

εγ (p)ε∗
γ ′(p) = δγ γ ′ . (15)

From (14) we derive the following normalization condition:∫
dr f ∗

γ (p, ω)i
↔
∂0 fγ ′(p′, ω′) = δγ γ ′(1 + βp2)

1
2 (1 + βp′2)

1
2 δ(p − p′). (16)

The creation and annihilation operators are non-relativistic ones and, since the momentum
operators are commuting, they satisfy the usual commutation relation,[

âγ (p), â
†
γ ′(p′)

] = δγ γ ′δ(p − p′). (17)

This result, along with equation (12), can be used to derive a modified commutation relation
between the fields:

[Ai(r, t), Ej (r′, t)] = i

(
δij − ∂i∂j

∇2

) sin
(

π(r−r′)
2h̄

√
β

)
π(r − r′)

. (18)

Using the well-known relation δ(x) = limε→0
sin(x/ε)

πx
, we obtain the usual commutation

relation in the limit β → 0.
Armed with this background, let us then attack the Casimir effect with square parallel

plates of sides L. Then the electromagnetic field must satisfy boundary conditions. In our
case, we have from (14)

κ3 = h̄nπ

a
, (19)

where a is the plates separation, κ3 = p3√
β(q2+p2

3)
arctan

(√
β
(
q2 + p2

3

))
and q is the transverse

momentum along the plates. In (19) we have a finite number of modes n = 0, 1, 2, . . . , nmax =[
a

2(�x)min

]
where [· · ·] denotes the next smaller integer. Then the geometrical quantization given

by (19) fulfils the requirement that in quantum models with a minimal length, the Compton
wavelength cannot take arbitrary values. Indeed we have λmin = 4h̄

√
β.

Since β is a small parameter, we have tried a series solution to the eighth order in β. In
the following, we just show the following truncated solution:

p3(n) = h̄nπ

a

[
1 +

β

3

(
q2 +

(
h̄nπ

a

)2
)

+
β2

45

(
2

(
q
h̄nπ

a

)2

− 4q4 + 12

(
h̄nπ

a

)4
)

+ · · ·
]

.

(20)

In figure 1 we have plotted the modified wavelengths associated with momentums κ3 and p3

to the eighth order in β for β = 0.01 and h̄ = a = q = 1. For large n the wavelength
associated with κ3 tends asymptotically to λmin while the one associated with p3 tends to zero
faster than the wavelength of the usual theory. A similar behaviour has been obtained in [16]
using generalized dispersion relations.

The potential vector in the presence of the plates is then given by

Âa(r, t) =
√

2πh̄3c
√

β
h̄π

a

nmax∑
n=−nmax

γ=±1

∫
dq

(1 + βp2(a))
√

arctan
√

β|p(a)|

× {
fγ (p(a), ω)âγ (p(a)) + f ∗(p(a), ω)â†

γ (p(a))
}
, (21)
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Figure 1. Plot of Compton wavelengths associated with the momentums κ3 (solid), p3 (dot) for
β = 0.01 and the usual one (dash–dot) versus the quantum number n.

where

p(a) = q + p3(n). (22)

The commutation relation between the creation and annihilation operators is then affected
by the solution (20). For our purpose it suffices to use the following approximation[

âγ (p(a)), â
†
γ ′(p′(a))

] 
 a

πh̄
δnn′δγ γ ′δ(q − q′) + O(β). (23)

The energy shift resulting from the presence of the plates is defined by the relation

�E = 〈0|(Ĥ (a) − Ĥ )|0〉

= 1

8π

∫
dr〈0|{(∂0Âa)

2 − Âa�Âa + (∂0Â)2 − Â�Â}|0〉. (24)

Performing the standard calculation we get

�E = cL2

8πh̄2β
1
2

∫
dq




nmax∑
n=−nmax

arctan
√

β
(
q2 + p2

3(n)
)

1 + β
(
q2 + p2

3(n)
)

−
∫ νmax

−νmax

dν
arctan

√
β
(
q2 + p2

3(ν)
)

1 + β
(
q2 + p2

3(ν)
)


 . (25)

From this expression it is easily seen that the terms proportional to βn�1 in p3(n) and the
omitted terms in the commutation relation (23) will give negligible contributions proportional
to βn�2.

Exchanging sums and integrals and defining the following quantity

G(ν) = 1√
β

∫ ∞

0
dx

arctan
√

β
(
p2

3(ν) + x
)

1 + β
(
p2

3(ν) + x
) , (26)
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the energy shift per unit area �E = �E
L2 is given by

�E = c

4πh̄2

{
nmax∑
n=0

G(n) −
∫ νmax

0
dν G(ν) − 1

2
G(0)

}
. (27)

With the aid of the variable ρ = 1√
β

arctan
√

β
(
x + p2

3(ν)
)
, the function G(ν) is simply

given by

G(ν) = 2√
β

∫ π

2
√

β

1√
β

arctan p3(ν)
√

β

tan(
√

βρ)ρ dρ. (28)

Using the following expansion [18]

t tan t =
∞∑

k=1

22k(22k − 1)Bk

(2k)!
t2k, |t | <

π

2
(29)

and performing the integral over ρ we obtain

G(ν) =
∞∑

k=1

βk−122k+1(22k − 1)Bk

(2k + 1)(2k)!

[(
π

2
√

β

)2k+1

−
(

1√
β

arctan p3(ν)
√

β

)2k+1
]

(30)

where Bk are Bernoulli’s numbers given by B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , . . . [17].

It is important to note here that we have not introduced any cut-off as is the case in
the ordinary Casimir effect. The cut-off 1√

β
is implemented naturally in equation (28). In

equation (30) the contributions for n > nmax are negligible compared to the ones for n �
nmax since 1√

β
arctan p3(ν)

√
β tends asymptotically to π

2
√

β
for n > nmax. For the rest of the

calculation the first term is irrelevant for our purpose and we ignore it. Then we can extend
the summation over n and ν in equation (27) from 0 to +∞. Thus

�E = c

4πh̄2

{ ∞∑
n=0

G(n) −
∫ ∞

0
dν G(ν) − 1

2
G(0)

}
. (31)

At this stage we can use Euler’s formula [17]∫ ∞

0
f (x) dx =

∞∑
n=0

f (n) − f (0)

2
+

∞∑
m=1

B2m

(2m)!
f (2m−1)(0) (32)

to obtain

�E = − c

4πh̄2

∞∑
m=1

B2m

(2m)!
G(2m−1)(0) (33)

where B2m are the Bernoulli numbers and G(l)(0) are derivatives of G(ν) at ν = 0.
Using the expression of p3(ν) given by (20) in (30) we obtain a first-order expansion in

β (recall that the commutation relations are valid to the first order in β)

G(ν) = −4B1

(
h̄πν

a

)3

+ 4β

[
B1

3
+ B2

](
h̄πν

a

)5

. (34)

Using B1 = 1
6 , B2 = 1

30 , we finally obtain

G(ν) = −2

3

(
h̄νπ

a

)3

+
48

135
β

(
h̄νπ

a

)5

. (35)
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Then from equation (33) we have

�E = − c

4πh̄2

[
B4

4!
G(3)(0) +

B6

6!
G(5)(0)

]
. (36)

Evaluating the derivatives at ν = 0 and using B4 = 1
30 , B6 = 691

2730 , we obtain

�E = h̄c

{
π2

720a3
− β

691

284 275

h̄2π4

a5

}
. (37)

The force per unit surface F = ∂
∂a

�E generated by this energy is given by

F = −h̄c

{
1

240

π2

a4
− β

691

36 855

h̄2π4

a6

}
. (38)

It is clear from this result that for a fixed separation of the plates, the Casimir force in the
presence of a minimal length may be attractive or repulsive depending on the value of the
minimal length (�x)min = h̄

√
β.

The first term in equation (38) is the standard attractive Casimir force [19] which alone is
a source of instability. Indeed the two-plate systems can collapse to a one-plate system. The
second term which is the correction arising from the presence of the minimal length is the
repulsive contribution to the Casimir force and therefore provides the desired stability of
the two-plate systems. This is important for the construction of consistent Kaluza–Klein
theories. The same results have been obtained by [20] for the Casimir effect in κ-deformed
theory and by [16] for a particular implementation of the minimal length.

The condition for a quantum stability of the two-plate systems gives the following
constraint

(�x)min

a
∼ 0.15. (39)

Using the experimentally accessible plates separations, which are of order 100 nm [22], we
obtain

h̄
√

β ∼ 15 nm. (40)

However, for the force to remain attractive, as is usually observed, we have the condition
h̄
√

β

a
� 0.15.
Figure 2 illustrates the variation of the Casimir force for different values of minimal

length. It is clear that this force becomes repulsive for (�x)min
a

> 0.15. Let us point out that
in the plot a is always greater than (�x)min because the Casimir force for plate separation
below the minimal length is meaningful since the space below this scale is fuzzy and then
experimentally inaccessible.

Before ending this section we note that the Casimir force in the presence of one
compactified extra dimension lies below the standard Casimir force [15], while in the case
of a minimal length it lies above. Therefore we can conclude that the effects of the minimal
length and the extra dimensions are opposites. This is expected from the beginning since the
minimal length squeeze the momentum space at high momentum and then the natural cut-off
of the model suppresses the contributions of such momentum. Finally, our treatment along
with the work in [16] contradict the one in [21] where the Casimir force in the presence of a
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Figure 2. Plot of Casimir force F (eV nm−3) versus the plates separation a (nm) for different
values of the minimal length h̄

√
β.

minimal length has been found to be a discontinuous function of the plate separation, a result
essentially due to an appropriate geometric quantization between the plates.

4. Conclusion

In this paper, we considered the effect of minimal length on the Casimir force between
parallel plates. We have shown that the minimal length acts like a natural cut-off which
suppresses the contribution of unwanted high momentum. Using the accessible plates
separation used for an experimental calculation of the Casimir force, we found an upper bound
for the minimal length of the same order of the size of one compactified extra dimension.
However, this bound is already excluded from high precision measurements and collider
experiments [7] and then we recover the usual attractive character of the Casimir force. The
Casimir force in the presence of minimal length in the context of a model with one extra
dimension is under investigation and will be published elsewhere.
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